The universal R-matrix and the Yang-Baxter equation with parameters

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 25 L1023
(http://iopscience.iop.org/0305-4470/25/17/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.58
The article was downloaded on 01/06/2010 at 16:56

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The universal \boldsymbol{R}-matrix and the Yang-Baxter equation with parameters

Č Burdík \dagger and P Hellinger \ddagger
\dagger Nuclear Centre, Faculty of Mathematics and Physics, Charles University, V Holešovǐ̌kách 2, 18000 Prague 8, Czechoslovakia \ddagger Department of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague 8, Czechoslovakia

Received 11 May 1992

Abstract

We formulate, and demonstrate with some examples, a method for obtaining solutions of the Yang-Baxter equation with parameters.

The Yang-Baxter equation (Ybe)

$$
\begin{equation*}
R_{12}\left(z_{1}, z_{2}\right) R_{13}\left(z_{1}, z_{3}\right) R_{23}\left(z_{2}, z_{3}\right)=R_{23}\left(z_{2}, z_{3}\right) R_{13}\left(z_{1}, z_{3}\right) R_{12}\left(z_{1}, z_{2}\right) \tag{1}
\end{equation*}
$$

emerges in many branches of theoretical physics (Akutsu and Deguchi 1991).
We will show that it is possible to obtain the solution of the YBE from the irreducible representation (irrep) of the quasi-triangular Hopf algebra, or precisely of its universal \boldsymbol{R}-matrix. The Hopf algebra A is a quasi-triangular Hopf algebra (see Drinfeld 1986), if there exists an invertable element $R, R \in A \otimes A$, called the universal R-matrix, and the comultiplications Δ, Δ^{\prime} are related by conjugation

$$
\begin{equation*}
\Delta^{\prime}(a) \equiv \sigma \Delta(a)=R \Delta(a) R^{-1} \quad \sigma(a \otimes b)=b \otimes a \tag{2}
\end{equation*}
$$

for any $a \in A$, and the following conditions are satisfied
$(\mathrm{id} \otimes \Delta)(R)=R_{13} R_{12} \quad(\Delta \otimes \mathrm{id})(R)=R_{13} R_{23} \quad(S \otimes \mathrm{id})(R)=R^{-1}$.
These above relations (2), (3) imply ybe for the universal R-matrix on the algebra level

$$
\begin{equation*}
R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12} \tag{4}
\end{equation*}
$$

Each central element of the algebra is represented in the irreps by the identity operator (the Schurr lemma) multiplied by a certain number; some of them are determined by the dimension of the irrep (the only case of the deformed enveloping algebra of any simple Lie algebra) and so only the other central elements have arbitrary values, which number the irreps of a certain dimension. Let us denote the set of the values z and the n-dimensional irrep, corresponding to z, as π_{z}^{n}. The representation $\pi_{z_{1}}^{n} \otimes \pi_{z_{2}}^{n}$ of the universal R-matrix R gives us the solution of YBE

$$
\begin{equation*}
R^{n}\left(z_{1}, z_{2}\right):=\left(\pi_{z_{1}}^{n} \otimes \pi_{z_{2}}^{n}\right) R \tag{5}
\end{equation*}
$$

as a straightforward consequence of the properties of the universal R-matrix; applying the representation $\pi_{z_{1}}^{n} \otimes \pi_{z_{2}}^{n} \otimes \pi_{z_{3}}^{n}$ to (4) we get (1).

For example, we will investigate the case of $\mathrm{U}_{\mathrm{q}, \mathrm{s}} \mathrm{gl}(2)$ (see Schirrmacher et al 1991), with the generators $J_{0}, J_{ \pm}, Z$, with the commutation relations

$$
\begin{array}{lrc}
{\left[J_{0}, J_{ \pm}\right]= \pm J_{ \pm}} & {\left[J_{+}, J_{-}\right]=\frac{\sinh \left(2 \eta J_{0}\right)}{\sinh \eta}} \\
{\left[Z, J_{ \pm}\right]=0} & {\left[Z, J_{0}\right]=0} & q=\mathrm{e}^{\eta} \tag{6}
\end{array}
$$

with the comultiplication

$$
\begin{align*}
& \Delta\left(J_{+}\right)=q^{-J_{0}}(q s)^{Z} \otimes J_{+}+J_{+} \otimes q^{J_{0}}\left(\frac{s}{q}\right)^{Z} \\
& \Delta\left(J_{-}\right)=q^{-J_{0}}(q s)^{-Z} \otimes J_{-}+J_{-} \otimes q^{J_{0}}\left(\frac{s}{q}\right)^{-Z} \tag{7}\\
& \Delta\left(J_{0}\right)=J_{0} \otimes 1+1 \otimes J_{0} \quad \Delta(Z)=Z \otimes 1+1 \otimes Z
\end{align*}
$$

with the antipod

$$
\begin{equation*}
S(Z)=-Z \quad S\left(J_{0}\right)=-J_{0} \quad S\left(J_{ \pm}\right)=-q^{ \pm 1} s^{\mp 22} J_{ \pm} \tag{8}
\end{equation*}
$$

and co-unit

$$
\begin{equation*}
\varepsilon(Z)=\varepsilon\left(J_{0}\right)=\varepsilon\left(J_{ \pm}\right)=0 . \tag{9}
\end{equation*}
$$

This algebra has the universal R-matrix $R_{q, s}$ (see Burdik and Hellinger 1992)

$$
\begin{equation*}
R_{q, s}=q^{2\left(J_{0} \otimes J_{0}+J_{0} \otimes Z-Z \otimes J_{0}\right)} \sum_{n=0}^{\infty} \frac{\left(1-q^{-2}\right)^{n}}{\left[n, q^{-2}\right]!}\left(q^{J_{0}}(q s)^{-Z} J_{+}\right)^{n} \otimes\left(q^{-J_{0}}\left(\frac{s}{q}\right)^{Z} J_{-}\right)^{n} \tag{10}
\end{equation*}
$$

Here and henceforward $[n, q]:=\left(1-q^{n}\right) /(1-q)$ and $[n, q]!:=[n, q][n-1, q] \ldots 1$.
We will only deal with the two-dimensional representation π_{z}, as z is an arbitrary complex number

$$
\begin{array}{ll}
\pi_{z}(Z):=\left(\begin{array}{ll}
z & 0 \\
0 & z
\end{array}\right) & \pi_{z}\left(J_{0}\right):=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \\
\pi_{z}\left(J_{+}\right):=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) & \pi_{z}\left(J_{-}\right):=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) . \tag{11}
\end{array}
$$

Following the general concept (5), we have this solution of the ybe

$$
R_{q, s}\left(z_{1}, z_{2}\right)=\left(\begin{array}{cccc}
q q^{-z_{1}+z_{2}} & 0 & 0 & 0 \tag{12}\\
0 & q^{-z_{1}-z_{2}} & 0 & 0 \\
0 & \left(q-q^{-1}\right) s^{-z_{1}+z_{2}} & q^{z_{1}+z_{2}} & 0 \\
0 & 0 & 0 & q q^{z_{1}-z_{2}}
\end{array}\right)
$$

which is simply related to the solution R_{5} in Hlavaty (1987).
The second example is more subtle. Let us consider $\mathrm{U}_{\text {q,s }} \mathrm{gl}(1 \mid 1)$ (see Bednář et al 1992) with the generators $Z, H, \psi^{ \pm}$, with the relations

$$
\begin{array}{lc}
{\left[H, \psi^{ \pm}\right]= \pm 2 \psi^{ \pm}} & {[Z, H]=\left[Z, \psi^{ \pm}\right]=0} \tag{13}\\
\left\{\psi^{+}, \psi^{-}\right\}=\frac{q^{2} Z-1}{q^{2}-1} & \left(\psi^{ \pm}\right)^{2}=0
\end{array}
$$

with the comultiplication

$$
\begin{align*}
& \Delta\left(\psi_{ \pm}\right)=s^{ \pm Z / 2} \otimes \psi_{ \pm}+\psi_{ \pm} \otimes s^{F Z / 2} q^{Z} \\
& \Delta(H)=H \otimes 1+1 \otimes H \tag{14}\\
& \Delta(Z)=Z \otimes 1+1 \otimes Z
\end{align*}
$$

with the antipod

$$
\begin{equation*}
S(Z)=-Z \quad S(H)=-H \quad S\left(\psi^{ \pm}\right)=-q^{-z} \psi^{ \pm} \tag{15}
\end{equation*}
$$

and the co-unit

$$
\begin{equation*}
\varepsilon(Z)=\varepsilon(H)=\varepsilon\left(\psi^{ \pm}\right)=0 \text {. } \tag{16}
\end{equation*}
$$

By the quantum double construction (see Drinfeld 1986), more precisely by its graded version, it is possible to find the universal R-matrix in the form
$R_{q, s}=q^{(H \otimes Z+Z \otimes H) / 2} S^{(H \otimes Z-Z \otimes H) / 2}\left(1 \otimes 1+\left(1-q^{2}\right) s^{-Z / 2} \psi^{+} \otimes s^{-Z / 2} q^{-Z} \psi^{-}\right)$.
For the (graded) representation π_{z}, z being an arbitrary complex number,

$$
\begin{array}{ll}
\pi_{z}(Z):=\left(\begin{array}{ll}
z & 0 \\
0 & z
\end{array}\right) & \pi_{z}(H):=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \\
\pi_{z}\left(\psi^{+}\right):=\left(\begin{array}{cc}
0 & \left(q^{2 z}-1\right) /\left(q^{2}-1\right) \\
0 & 0
\end{array}\right) & \pi_{z}\left(\psi^{-}\right):=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) . \tag{18}
\end{array}
$$

We have the solution of the graded YBE, which is simply related to the solution of the YBE of this form:
$R_{q, s}\left(z_{1}, z_{2}\right)=\left(\begin{array}{cccc}\boldsymbol{q}^{\left(z_{1}+z_{2}\right) / 2} s^{\left(-z_{1}+z_{2}\right) / 2} & 0 & 0 & 0 \\ 0 & q^{\left(z_{1}-z_{2}\right) / 2} s^{\left(-z_{1}-z_{2}\right) / 2} & 0 & 0 \\ 0 & \boldsymbol{q}^{\left(-z_{1}-z_{2}\right) / 2}\left(q^{2 z_{1}}-1\right) & \boldsymbol{q}^{\left(-z_{1}+z_{2}\right) / 2} s^{\left(z_{1}+z_{2}\right) / 2} & 0 \\ 0 & 0 & 0 & -\boldsymbol{q}^{\left(-z_{1}-z_{2}\right) / 2} s^{\left(z_{1}-z_{1}\right) / 2}\end{array}\right)$.

By this construction we may obtain a class of solutions of YBE. However, the main problem is to find a suitable quasi-triangular Hopf algebra because most of the known ones today are the deformed enveloping algebras of the simple Lie algebras. So we were inspired by the case of $\mathrm{U}_{4, s} \mathrm{~g}(2)$, which may be thought of as a 'splice' product of $\mathrm{U}_{q} \mathrm{~s}(2)$ and $\mathrm{Uu}(1)$, and we constructed the deformation of the $\mathrm{Us}(\mathbf{3}) \oplus \mathrm{u}(1)^{2}$ as $\mathrm{U}_{q, s_{5}, s_{2} \mathrm{~s}(3)}(\mathrm{s}) \mathrm{u}(1)^{2}\left(q=\mathrm{e}^{h}\right)$, with generators $H_{1}, H_{2}, X_{1}^{ \pm}, X_{2}^{ \pm}, X_{3}^{ \pm}, Z_{1}, Z_{2}$. The algebra structure is as follows:

$$
\begin{align*}
& {\left[H_{i}, X_{i}^{ \pm}\right]= \pm 2 X_{i}^{ \pm} \quad\left[H_{1}, X_{2}^{ \pm}\right]=\mp X_{2}^{ \pm} \quad\left[H_{2}, X_{1}^{ \pm}\right]=\mp X_{1}^{ \pm}} \\
& {\left[X_{i}^{ \pm}, X_{j}^{-}\right]=\delta_{i j} \frac{\sinh \left(h H_{i} / 2\right)}{\sinh (h / 2)}} \\
& X_{3}^{ \pm}=q^{1 / 2} X_{1}^{ \pm} X_{2}^{ \pm}-q^{-1 / 2} X_{2}^{ \pm} X_{1}^{ \pm} \tag{20}\\
& 0=q^{-1 / 2} X_{1}^{ \pm} X_{3}^{ \pm}-q^{1 / 2} X_{3}^{ \pm} X_{1}^{ \pm} \\
& 0=q^{1 / 2} X_{2}^{ \pm} X_{3}^{ \pm}-q^{-1 / 2} X_{3}^{ \pm} X_{2}^{ \pm} \\
& {\left[Z_{j}, H_{i}\right]=\left[Z_{j}, X_{a}^{ \pm}\right]=0 \quad i, j=1,2 ; a=1,2,3 .}
\end{align*}
$$

The coalgebra structure is given by:

$$
\begin{align*}
& \Delta H_{i}=H_{i} \otimes 1+1 \otimes H_{i} \\
& \Delta Z_{i}=Z_{i} \otimes 1+1 \otimes Z_{i} \\
& \Delta X_{i}^{ \pm}=X_{i}^{ \pm} \otimes q^{H_{i} / 2} q^{ \pm Z_{i} / 2} s_{i}^{ \pm Z_{i} / 2}+q^{-H_{i} / 2} q^{\mp Z_{i} / 2} s_{i}^{ \pm Z_{i} / 2} \otimes X_{i}^{ \pm} \tag{21}\\
& i=1,2 .
\end{align*}
$$

The skew antipod has this form:

$$
\begin{align*}
& S_{0}\left(H_{i}\right)=-H_{i} \quad S_{0}\left(Z_{i}\right)=-Z_{i} \\
& S_{0}\left(X_{i}^{ \pm}\right)=-q^{\mp i} s_{i}^{\mp Z_{i}} X_{i}^{ \pm} \quad i=1,2 . \tag{22}
\end{align*}
$$

The co-unit is given by:

$$
\begin{align*}
& \varepsilon\left(Z_{i}\right)=\varepsilon\left(H_{i}\right)=\varepsilon\left(X_{a}^{ \pm}\right)=0 \\
& i=1,2 \quad a=1,2,3 . \tag{23}
\end{align*}
$$

Following the quantum double construction (see Burroughs 1990) we may find the universal R-matrix in the form
$R_{q, s_{1}, s_{2}}=q^{\Sigma_{i, j} \sigma_{i, j}^{-1}\left(Z_{i} \otimes H_{j}-H_{i} \otimes Z_{j}+H_{i} \otimes H_{j}\right)} E_{q^{-2}}\left(\lambda e_{1} \otimes f_{1}\right) E_{q^{-2}}\left(-\lambda e_{3} \otimes f_{3}\right) E_{q}-2\left(\lambda e_{2} \otimes f_{2}\right)$
where a is the Cartan matrix of $\operatorname{sl}(3), a^{-1}$ its inverse

$$
a=\left(\begin{array}{rr}
2 & -1 \tag{25}\\
-1 & 2
\end{array}\right) \quad a^{-1}=\left(\begin{array}{ll}
\frac{2}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{2}{3}
\end{array}\right)
$$

and

$$
\begin{array}{lll}
e_{i}=q^{H_{i} / 2} q^{Z_{i} / 2} s_{i}^{-Z_{i} / 2} X_{i}^{+} & f_{i}=q^{-H_{i} / 2} q^{Z_{i} / 2} s_{i}^{Z_{i} / 2} X_{i}^{-} & e_{3}=e_{1} e_{2}-q^{-1} e_{2} e_{1} \tag{26}\\
f_{3}=f_{1} f_{2}-q^{-1} f_{2} f_{1} & i=1,2 ; \lambda=1-q^{-2} \quad E_{x}(A)=\sum_{n=0}^{\infty} \frac{1}{[n, x]!} A^{n} .
\end{array}
$$

So now we will take the representation as $\pi_{\left(u_{1}, u_{2}\right)}, u_{1}, u_{2}$ being arbitrary complex numbers,

$$
\begin{array}{ll}
\pi_{\left(u_{1}, u_{2}\right)}\left(Z_{i}\right):=\left(\begin{array}{ccc}
u_{i} & 0 & 0 \\
0 & u_{i} & 0 \\
0 & 0 & u_{i}
\end{array}\right) & \pi_{\left(u_{1}, u_{2}\right)}\left(H_{1}\right):=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
\pi_{\left(u_{1}, u_{2}\right)}\left(H_{2}\right):=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) & \pi_{\left(u_{1}, u_{2}\right)}\left(X_{1}^{+}\right):=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
\pi_{\left(u_{1}, u_{2}\right)}\left(X_{1}^{-}\right):=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) & \pi_{\left(u_{1}, u_{2}\right)}\left(X_{2}^{+}\right):=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \tag{27}\\
\pi_{\left(u_{1}, u_{2}\right)}\left(X_{2}^{-}\right):=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) .
\end{array}
$$

For this representation we have the solution with four parameters

$$
R_{q, s_{1}, s_{2}}\left(\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right)=\left(\begin{array}{ccc}
A & 0 & 0 \tag{28}\\
B & C & 0 \\
D & E & F
\end{array}\right)
$$

where $A, \ldots, F, 0$ are 3×3 matrices, 0 is the zero matrix and

$$
\begin{align*}
& A=\left(\begin{array}{ccc}
q q^{j\left(2 u_{1}+u_{2}-2 v_{1}-v_{2}\right)} & 0 & 0 \\
0 & q^{j\left(2 u_{1}+u_{2}+v_{1}-v_{2}\right)} & 0 \\
0 & 0 & q^{f\left(2 u_{1}+u_{2}+v_{1}+2 v_{2}\right)}
\end{array}\right) \\
& B=\left(\begin{array}{cccc}
0 & (q-1 / q) s_{1}^{\frac{k}{1}\left(-u_{1}+v_{1}\right)} & q^{\frac{1}{(}\left(u_{1}+2 u_{2}-v_{1}-2 v_{2}\right)} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& C=\left(\begin{array}{ccc}
q^{\ddagger\left(-u_{1}+u_{2}-2 v_{1}-v_{2}\right)} & 0 & 0 \\
0 & q q^{\ddagger\left(-u_{1}+u_{2}+v_{1}-v_{2}\right)} & 0 \\
0 & 0 & q^{\ddagger\left(-u_{1}+u_{2}+v_{1}+2 v_{2}\right)}
\end{array}\right) \\
& \bar{D}=\left(\begin{array}{ccc}
0 & 0 & (q-1 / q) s_{1}^{\frac{1}{2}\left(-u_{1}+v_{1}\right)} s_{2}^{\frac{1}{2}\left(-u_{2}+v_{2}\right)} \boldsymbol{q}^{\frac{1}{6}\left(u_{1}-u_{2}-v_{1}+v_{2}\right)} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \tag{29}\\
& E=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & (q-1 / q) s_{2}^{\frac{k}{k}\left(-u_{2}+v_{2}\right)} q^{\frac{1}{6}\left(-2 u_{1}-u_{2}+2 v_{1}+v_{2}\right)} \\
0 & 0 & 0
\end{array}\right) \\
& F=\left(\begin{array}{ccc}
q^{-j\left(u_{1}+2 u_{2}+2 v_{1}+v_{2}\right)} & 0 & 0 \\
0 & q^{\ddagger\left(-u_{1}-2 u_{2}+v_{1}-v_{2}\right)} & 0 \\
0 & 0 & q q^{1\left(-u_{1}-2 u_{2}+v_{1}+2 v_{2}\right)}
\end{array}\right) .
\end{align*}
$$

In this letter we have constructed some solutions of the YBE and we propose this method for the construction of new ones, intimately connected with some quasitriangular Hopf algebras. Note that none of the solutions (12), (19), (28) is a function of the difference, so it is not possible to find these solutions by the Baxterization process (see Cheng et al 1991).

References

[^0]
[^0]: Akutsu Y and Deguchi T 1991 Phys. Rev. Lett. 67777
 Bednář M, Burdík Č, Couture M and Hlavatý L 1992 J. Phys. A: Math. Gen. 25 L341
 Burdík Č and Hellinger P 1992 J. Phys. A: Math. Gen. 25 L629
 Burroughs N L 1990 Commun. Math. Phys. 127109
 Cheng Y, Ge M-L and Xue Y 1991 Commun. Math. Phys. 136195
 Drinfeld V G 1986 Proc. IMS (Berkeley Academic Press) 1798
 Hiavatý $\mathbf{L} 1987$ J. Finys. A: Math. Gen. 19 Lió i
 Schirrmacher A, Wess J and Zumino B 1991 Z. Phys. C 49317

