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LETTER TO THE EDITOR

The universal R-matrix and the Yang—Baxter equation
with parameters

C Burdikt and P Hellinger}

T Nuclear Centre, Faculty of Mathematics and Physics, Charles University,
V Holefovitkich 2, 180 00 Prague 8, Czechoslovakia

1 Department of Theoretical Physics, Faculty of Mathematics and Physics,
Charles University, V Holefovitkdich 2, 180 00 Prague 8, Czechoslovakia

Received 11 May 1992

Abstract. We formulate, and demonstrate with some examples, a method for obtaining
solutions of the Yang-Baxter equation with parameters.

The Yang-Baxter equation (YBE)
Ryx(2), 22)Rix(21, 23) Ras(22, 23) = Rays(22, 23) Rys( 2y, 23) Ry2( 21, 23) (1)

emerges in many branches of theoretical physics (Akutsu and Deguchi 1991).

We will show that it is possible to obtain the solution of the YBE from the irreducible
representation (irren) of the guasi-triancular Honf aleebra or nreciselv of its universal
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R-matrix. The Hopf algebra A is a quasi-triangular Hopf algebra (see Drinfeld 1986),
if there exists an invertable element R, R € A® A, called the universal R-matrix, and
the comultiplications A, A’ are related by conjugation

A'{a)=oA(a)=RA(a)R™' o(a®b)=b®a (2)
for any a € A, and the following conditions are satisfied
(id®A)R)= R;3R,, (A®id}(R}=R 3R, (S®id)(R)=R™". (3)
These above relations (2), (3) imply YBE for the universal R-matrix on the algebra levcl.
R:R\:Rs = Ry3R 3R, 5. {4)

Each central element of the algebra is represented in the irreps by the identity
operator (the Schurr lemma) multlphed by a certain number; some of them are
determined by the dimension of the irrep (the only case of the deformed enveloping
algebra of any simple Lie algebra) and so only the other central elements have arbitrary
values, which number the irreps of a certain dimension. Let us denote the set of the
values z and the n-dimensional irrep, corresponding to z, as =;. The representation

7;, ® m;, of the universal R-matrix R gives us the solution of ¥BE
R™(zi, )= (7, @7;,)R (5)

as a straightforward consequence of the properties of the universal R-matrix; applying
the representation 7; @ 7, @}, to (4) we get (1).
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For example, we will investigate the case of U, ,gl(2) (see Schirrmacher er al 1991),
with the generators Jy, J., Z, with the commutation relations

Do dd=2l.  [J,,J]=S00C0h)
sinh 5
(6)
[Z,].]=0 [Z, 1,]=0 g=¢e"
with the comuliiplication
z
AU ) =g (gs)* ®J, +f+®q’o(§)
s\ 2
ML) =g ey @1 +1.87%(3) (7
A(Jo)=1,®1+18J, AZ)=ZR1+1®Z
with the antipod
$(Z)=-Z S(T)=—J, S(J.y=—q"'s7%), (8)
and co-unit )
e(Z)=e(Jo)=e(J.)=0. 9)
This algebra has the universal R-matrix R, (see Burdik and Hellinger 1992)
_ ugiriez-zen) < (1-¢7)" Zy \n ( _,(s)z )"
L= Lhated i o —_— [ J of—| J }. 10
R‘lo q ng() [n’ q 2]! (q (qs) +) ® q q ( )

Here and henceforward [n, g]:=(1—¢")/(1—¢g) and [n, ¢]!:=[n, q][n-1,4q]...1.
We will only deal with the two-dimensional representation wr,, as z is an arbitrary
complex number

n2y=(; ) mo=(p )

(11)
0t 0 0
war=(0 ) war= (" ).
Following the general concept (5), we have this solution of the YBE
q,q,—zl+:rz 0 0 0
0 q_zl_zl 0 0 .
= 12
Rq.!(zl ’ 22) 0 (q - q—l)s—zl+zz q21+22 0 ( )
0 0 0 qqzl_zl

which is simply related to the solution R; in Hlavaty (1987).
The second example is more subtle. Let us consider U, ,gl(1|1) (see Bednif et al
1992) with the generators Z, H, ¢*, with the relations

)= 129t Z, H1=[Z,¢")=0
{H, ¢*]=x2¢ [Z, H1=[Z, ¢"] )
g Z-1
g’ -1

{g*,¢7}= (¥*)*=0
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with the comultiplication
M) =5 @ Y+ 4. ® s 7g*
A(H)=H®1+1QH (14)
A(Z)=ZR1+1R®Z

with the antipod

S(Z)=-z S(H)=-H S(y=)=—q %" (15)
and the co-unit
e(Z)=e(H)=e(y")=0. (16)

By the quantum double construction (see Drinfeld 1986), more precisely by its graded
version, it is possible to find the universal R-matrix in the form

qu___q(H®Z+Z®H)IZS(H®Z—Z®H)/2(1®1+(1_qZ)S“-Z;Q;b-F@S—iZjVZq—Zw—)_ (17)
For the (graded) representation =, z being an arbitrary complex number,
z 0 1 0
Tam Hy=
n@=(5 ?) nen=(y )
0 (¢¥-1)/(g*-1) 00 (19
Y qa - q - T
m () (0 0 ) AUNE (1 0).

We have the solution of the graded vyBE, which is simply related to the solution of the
vBE of this form:

qUrrea 2g(-s a2 0 o 0
0 q(zl—zz)fzs(—zl-zz)/z 1] 0
Rq -"(zl 4 22) = {~z,—~z.)/2¢ 2z (—z,+z,)/2 (z +z,)/2
- 0 gilaT (q 1—1) gt arE 3t 1]
0 0 0 __q(—zl—zz)/zs(zl—z,)fi

(19)

By this construction we may obtain a class of sofutions of YBE. However, the main
problem is to find a suitable quasi-triangular Hopf algebra because most of the known
ones today are the deformed enveloping algebras of the simple Lie algebras. So we
were inspired by the case of U_,gl(2), which may be thought of as a ‘splice’ product
of U,sl(2) and Uu(1), and we constructed the deformation of the Usl(3)®u(1)? as
U, s81(3)® u(1)® (g=e"), with generators H,, H,, X7, X3, X3, Z,, Z,. The algebra
structure is as follows:

+ v-1_ o Sinh(hH;/2)
[X7, X5 1= sinh(h/2)

Xi=g"XiXi-q " XIXY
0=¢""’XX5-¢'"’ XX}
0=¢"’X3X3~q7’X5X3

[Z, H]=[Z, X2]=0 ij=1,2%a=1,23.

(20)
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The coalgebra structure is given by:
AH=H®1+1®H,
AZ,=ZR1+1®Z

AXE=XE@qH/2g* 22 st 4 " H/2 =212 sEAP@ X (21).

i=1,2.
The skew antipod has this form:

So(H,) = —H; Sl Ziy=-

S X)=—q""sT5X} i=1,2. @2
The co-unit is given by:

e(Z)=e(H}=¢e(X7)=0

(23)

i=12 a=1,2,3.

Following the quantum double construction (see Burroughs 1990) we may find the
universal R-matrix in the form

Ry, =g GOH - HBZTHIMN B (Ao, @ f))E 2(—Aes®f2)E ,2(Ae;® f) (24)

where a is the Cartan matrix of s1(3), &' its inverse

(5 ) =) 2
and
R e fi=qHi2gR T Y - es=e,e;— g ese,
26)
S=fifimafi  i=LZA=1-g¢7  E(A)= ) ——a"

n=0 |1, X]'

So now we will take the representation as =, .., %, ¥, being arbitrary complex
numbers,

u 0 0 1 00
Tl Z)={ 0t 0 P (H)={0 1 0
0 0 u 0 0 0
6 & 0 /6 1 0\
Tanup(H2) =10 10 T X7)=[0 0 0
(0 0 —1) (0 0 0
0 0 0 000 (27)
'"(u;uz)(xl)— 1 0 0 'n’(,‘l"z)(X =10 0 1
(0 0 0) 0 0 o)
0 0 0
Tanup(X2)=10 0 0].
(o 1 o)
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For this representation we have the solution with four parameters

A Q0 0
R‘J-Sl-sz((ul H ul)s (vl, UZ)) =B C ¢ (28)
D E F
where A, ..., F,0 are 3 x3 matrices, 0 is the zero matrix and

/ 1{2:1 +u,—7n —n 'I ~ ~

qq9” U 0
A= 0 qi(z"l*“z‘“’n‘"z) 0

] q](2u|+u2+vl+2nz)

0 — l/q)si( u v} qo(u +2u,—v,~2v,) 0
B=|0 0 0

0 0 0

i( u +u2—201—uz) 0 0
qqi(_“l*"‘z*'"l‘”z) 0
0 qi(—u‘+u2+v‘+2uzj
- _ 29
/0 0 ( _ l/q)S%(—“fH’I)s%( u2+vz)qé(u —uy v|+92)\ ( )

D=0 0 0

0 0 0

0 0 0

0 0 (q l/q)s“ u2+v2)q6( 2u,—u,+20,+0,)

0 o 0

—J(u F2uy+2e, +u2) O 0
F= 0 qi(—“l—2H2+ul—u2) 0 i
0 0 qql(—ﬂl—2u2+vl+292)

In this letter we have constructed some solutions of the YBE and we propose this
method for the construction of mew ones, intimately connected with some quasi-
triangular Hopf algebras. Note that none of the solutions (12), (19), (28) is a function
of the difference, so it is not possible to find these solutions by the Baxterization
process (see Cheng et al 1991),
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